# Options Fundamentals Ep 4

# Demystifying the Greeks: Delta

Gab: Finance Group @MidwayGab

BitChute: MidwayTrades



#### Disclaimer

This presentation is for educational purposes only. Nothing in this presentation is intended to be trading or financial advice.



#### The Greeks?



## The Greeks?



#### The Greeks?



#### The Greeks!

- The Greeks are parameters in theoretical options pricing models
- These parameters are named after Greek letters (most real, one fake)
- Real prices are set by buyers and sellers in the market place
- Pricing models give us an idea of how the price of an option should move in theory given factors like:
  - The price of the underlying
  - Volatility
  - Time Decay
  - Cost to Carry
- These pricing models help traders understand the risks being taken by a trade at a given time and over the life of the trade.

#### Delta: Formal Definition

- Delta measures how much the price of an option should move if the underlying moves 1 point.
- It is expressed as a decimal value from 0-1
  - This makes sense as an option is a derivative of the underlying stock. It should never move more than the stock otherwise why buy the stock?
  - The more an option is ITM, the higher the delta should be

#### Delta: Informal Definition

- Traders also view delta as the probability that an option contract will expire ITM
- This makes sense because:
  - Probability is also expressed as a decimal value between 0 and 1
  - The value gets higher as the option goes further
    ITM

- Stock XYZ is trading at \$60
- I buy a \$60 call 60 days out for \$2.00
- After I buy it, the stock moves to \$61
- Considering only delta, where should my option be priced?
- A) \$2.00
- B) \$2.25
- C) \$2.50
- D) \$3.00

- Stock XYZ is trading at \$60
- I buy a \$60 call 60 days out for \$2.00
- After I buy it, the stock moves to \$61
- Considering only delta, where should my option be priced?
- A) \$2.00
- B)
- C) \$2.50
- D) \$3.00

- Stock XYZ is trading at \$60
- I buy a \$60 call 60 days out for \$2.00
- After I buy it, the stock moves to \$61
- Considering only delta, where should my option be priced?
- A)
- B)
- C) \$2.50
- D) \$3.00

- Stock XYZ is trading at \$60
- I buy a \$60 call 60 days out for \$2.00
- After I buy it, the stock moves to \$61
- Considering only delta, where should my option be priced?
- A)
- B)
- C) \$2.50
- D)

- Stock XYZ is trading at \$60
- I buy a \$60 call 60 days out for \$2.00
- After I buy it, the stock moves to \$61
- Considering only delta, where should my option be priced?
- C) \$2.50
- Why?
  - If an option is exactly ATM, then the probability of expiring ITM is 50% (or .50). That should be the delta
  - Therefore, if the underlying moves up \$1, the option should move up \$.50
- It works for the opposite direction too
  - If XYZ moves to \$59, delta would price my call option at \$1.50

#### How Delta Moves

- Delta doesn't necessarily move in a straight line.
- The probability definition of delta explains this
  - As the underlying moves more ITM, the price probability gets higher and the price of the underlying goes higher

# Delta Example: Calls

| APL                    | ▼ 1 APPL          | LE INC COM | 152.70 -1.22<br>-0.79% | B: 152.37<br>A: 152.60 | ETB NASDAQ       |                  |                      |              |  |
|------------------------|-------------------|------------|------------------------|------------------------|------------------|------------------|----------------------|--------------|--|
| Underlying             |                   |            |                        |                        |                  |                  |                      |              |  |
|                        | Last X            |            | Net Chng               |                        | Bid X            | As               | k X                  | Size         |  |
|                        | 152.70 Q          |            | -1.22                  |                        | 152.37 Q         | 152.60           | P                    | 1 × 25       |  |
| Trade Grid             |                   |            |                        |                        |                  |                  |                      |              |  |
| Option Chair           | n Filter: Off     | Spread: Si | ngle Layout: L         | ast X, Net             | Change, Impl Vol | l, Delta         |                      |              |  |
| •                      |                   | 4          | CALLS                  |                        |                  | -                | Strikes: 30          | 20           |  |
|                        | Last X            | Net Chng   | Impl Vol               | Delta ,                | Bid X            | Ask X            | Exp                  | Strike       |  |
| <b>&gt;</b> 25 (45) 40 | -                 |            | impi voi ,             | Delta ,                | Blu A            | ASKA             | Exp                  | Strike       |  |
| > 25 JAN 19            | (1) 100 <b>(V</b> |            |                        |                        |                  |                  |                      |              |  |
| > 1 FEB 19             | (8) 100 <b>(V</b> | Veeklys)   |                        |                        |                  |                  |                      |              |  |
| ▼ 8 FEB 19             | (15) 100 (        | Weeklys)   |                        |                        |                  |                  |                      |              |  |
|                        | 16.80 H           | 0          | 44.48%                 | .89                    | 16.30 Z          | 16.55 Z          | 8 FEB 19             | 137          |  |
|                        | 16.08 X           | 0          | 43.46%                 | .87                    | 15.40 Z          | 15.60 X          | 8 FEB 19             | 138          |  |
|                        | 15.30 Q           | +.98       | 43.05%                 | .86                    | 14.50 Z          | 14.75 Z          | 8 FEB 19             | 139          |  |
|                        | 13.58 I           | -1.14      | 42.78%                 | .84                    | 13.65 Z          | 13.90 Z          | 8 FEB 19             | 140          |  |
|                        | 15.40 E           | 0          | 41.98%                 | .83                    | 12.80 Z          | 13.00 Z          | 8 FEB 19             | 141          |  |
|                        | 11.70 A           | -2.90      | 41.61%                 | .81                    | 11.95 Z          | 12.20 Z          | 8 FEB 19             | 142          |  |
|                        | 11.55 Q           | 40         | 41.02%                 | .79                    | 11.15 Z          | 11.35 Z          | 8 FEB 19             | 143          |  |
|                        | 9.90 C            | 40         | 40.76%                 | .76                    | 10.40 Z          | 10.55 Z          | 8 FEB 19             | 144          |  |
|                        | 9.55 C            | 25         | 40.03%                 | .74                    | 9.60 Z           | 9.75 N           | 8 FEB 19             | 145          |  |
|                        | 10.67 C           | 0          | 39.81%                 | .72                    | 8.85 Z           | 9.05 Z           | 8 FEB 19             | 146          |  |
|                        | 8.10 H            | -1.20      | 39.34%                 | .69                    | 8.15 Z           | 8.30 Z           | 8 FEB 19             | 147          |  |
|                        | 7.20 H            | 50         | 38.87%                 | .66                    | 7.45 Z           | 7.60 N           | 8 FEB 19             | 148          |  |
|                        | 6.65 P            | -1.04      | 38.58%                 | .63                    | 6.80 Z           | 6.95 N           | 8 FEB 19             | 149          |  |
|                        | 6.00 Z            | 95         | 38.66%                 | .60                    | 6.25 Z           | 6.35 Z           | 8 FEB 19             | 150          |  |
|                        | 4.85 A            | 80         | 37.44%                 | .52                    | 4.75 Z           | 4.90 Z           | 8 FEB 19             | 152.5        |  |
|                        | 3.60 Z            | 75         | 36.58%                 | .43                    | 3.55 Z           | 3.65 Z           | 8 FEB 19             | 155          |  |
|                        | 2.60 P            | 60         | 35.63%                 | .35                    | 2.54 Z           | 2.61 N           | 8 FEB 19             | 157.5        |  |
|                        | 1.79 X            | 56         | 34.74%                 | .27                    | 1.74 Z<br>1.15 Z | 1.79 Z<br>1.21 Z | 8 FEB 19             | 160          |  |
|                        | 1.17 C<br>.74 P   | 36<br>28   | 34.19%<br>33.51%       | .20                    | 1.15 Z           | .76 Q            | 8 FEB 19<br>8 FEB 19 | 162.5<br>165 |  |
|                        | .45 A             | 28         | 33.29%                 | .14                    | ./3 Z            | .50 I            | 8 FEB 19             | 167.5        |  |
|                        | .30 Z             | 14         | 33.43%                 | .07                    | .28 C            | .32 N            | 8 FEB 19             | 170          |  |
|                        | .20 P             | 06         | 33.48%                 | .04                    | .16 M            | .21 N            | 8 FEB 19             | 172.5        |  |
|                        | .14 P             | 04         | 34.41%                 | .03                    | .11 Q            | .15              | 8 FEB 19             | 175          |  |
|                        | .09 Z             | 03         | 34.91%                 | .02                    | .06 1            | .11 X            | 8 FEB 19             | 177.5        |  |
|                        | .06 C             | 02         | 36.56%                 | .02                    | .05 Z            | .09 M            | 8 FEB 19             | 180          |  |
|                        | .04 E             | 0          | 36.91%                 | .01                    | .02 A            | .07 C            | 8 FEB 19             | 182.5        |  |
|                        | .04 M             | 02         | 39.87%                 | .01                    | .03 Z            | .07 M            | 8 FEB 19             | 185          |  |
|                        | .08 Q             | 0          | 41.08%                 | .01                    | .03 Z            | .05 X            | 8 FEB 19             | 187.5        |  |
|                        | .02 C             | 03         | 41.90%                 | .01                    | 0 T              | .06 M            | 8 FEB 19             | 190          |  |

#### Delta Example: Calls



#### Put Delta

- Call options are always expressed as a positive value
- Put options are always expressed as a negative value
  - This makes sense since a put gets more valuable as the underlying goes lower
  - It is common to speak about delta in terms of absolute value

# Using Delta to Measure Risk

- The delta of an option tells us important information about the risk of that option
  - It tells us how much my position will be affected by the movement of the underlying
  - It tells us the probability of my option finishing ITM
  - In complex trades, positional delta tells me the overall risk of my entire trade

#### Positional Delta



## Summary

- Greeks are parameters in options pricing models
- Option pricing models give us a <u>theoretical</u> prediction of how an option position will behave
- Greeks help traders quantify the risk of a position
- Delta is a parameter that measures how a price move in the underlying affects the price of an option.
- Delta also gives a probability of an option expiring ITM
- Position Delta is important to understand, especially for complex positions

